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Abstract

Version 1 of this project introduced a system that combined computer vision, metadata extraction, and semantic
embeddings to organize and retrieve wildlife imagery. Version 2 builds on that foundation by expanding the platform
into a more comprehensive AI-driven framework capable of deeper ecological reasoning and more accurate species
identification. This iteration incorporates transfer learning, multimodal vision–language embeddings, supervised
species classification, and object detection to improve robustness in complex wildlife imagery [1], [2]. By integrating
these models with geospatial analysis and ecoregion-aware filtering, the system grounds predictions in biologically
plausible context. The addition of agentic orchestration enables dynamic re-ranking, validation, and context-sensitive
inference across multiple signals. Together, these enhancements unify visual, semantic, and spatial information
within a modular architecture that improves classification reliability, supports natural language exploration, and
enables more meaningful ecological interpretation of wildlife image datasets.

I. INTRODUCTION/BACKGROUND

The proliferation of wildlife imagery from researchers, conservationists, and photographers has created
a need for intelligent systems that extend beyond basic storage and retrieval. This project envisions an
AI-enhanced platform explicitly tailored for wildlife media, offering deeper analytical capability and more
domain-specific functionality than general-purpose photo applications. By combining image processing
techniques with language-enabled vision models, the system transforms wildlife photographs into search-
able, analyzable data that supports semantic search, behavior analysis, and ecological interpretation across
personal and professional image collections. When augmented with geospatial tools, these approaches
allow users to uncover patterns related to migration, seasonal behavior, and habitat use, contributing to
ecological research and conservation efforts.

Prior work has demonstrated that wildlife imagery presents unique challenges for automated analysis
due to environmental variability, background complexity, and fine-grained interspecies similarity, limiting
the effectiveness of general-purpose computer vision systems [3]. At the same time, advances in deep
learning for ecological monitoring have shown that automated species identification at scale is both feasible
and scientifically valuable when models are grounded in ecological context [4]. These findings motivate
the continued development of integrated systems that unify computer vision, semantic embeddings, and
spatial reasoning, as explored in this second iteration of the platform.

II. PROBLEM STATEMENT

Traditional photo management tools such as Apple Photos or Google Photos lack the domain-specific
functionality required to analyze and derive insight from wildlife imagery. These platforms are not
designed to interpret complex ecological context, including animal behavior, environmental conditions,
or temporal patterns across geographic locations. As a result, they are poorly suited for researchers and
conservationists who require systems capable of organizing wildlife images while supporting advanced
species classification, semantic search, and predictive analysis. Prior ecological machine learning research
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emphasizes that meaningful interpretation of wildlife observations depends on integrating visual data with
spatial and environmental context rather than treating images as isolated artifacts [5].

Version 2 of this platform addresses this gap by focusing on improved species identification accuracy
while strengthening the underlying architecture to make the system more accessible, extensible, and secure.
It emphasizes protecting intellectual property through architectural separation of concerns and providing
modular tools that others can build upon. These enhancements improve the overall reliability of the system
and allow analytical focus to extend beyond identification toward the generation of meaningful ecological
insight.

III. METHODOLOGY/APPROACH

This project builds on an existing system developed in Python and PostgreSQL. The current platform
provides automated wildlife image ingestion, metadata extraction, and initial species identification.

The new enhancements extend this architecture (see Figure 1), which rests on two core pillars: a
Python-based processing pipeline and a PostgreSQL database extended with spatial (PostGIS) and vector
(PGVector) search capabilities. Python serves as the engine for ingestion, pre-processing, and analysis,
utilizing libraries such as Streamlit for the interactive user interface, OpenCV for image processing
and feature extraction, and BeautifulSoup for scraping reference images. Multimodal image and text
embeddings are generated using CLIP-based vision–language models, which provide transferable semantic
representations across visual domains [1].

Object detection and automated cropping are performed using a YOLO-based architecture, enabling
accurate localization of wildlife subjects within complex scenes [6]. Isolating focal subjects prior to
embedding generation improves downstream classification and similarity search performance. At the core
of the system, the World Wildlife Fund’s WildFinder [7] database provides authoritative species-by-region
information for grounding predictions in ecological context [5].

Fig. 1. Wildlife Image Processing and Semantic Search System Architecture
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To enrich the feature space, OpenCV is used to generate histograms of dominant colors and to construct
a custom color palette that can be queried for similarity analysis. Image metadata, particularly focal
length and sensor size, is leveraged to estimate species size as an additional discriminating feature. These
attributes supplement embeddings, enabling multi-dimensional comparison beyond purely visual similarity.
The combination of embeddings, color, and size properties produces a richer representation of each image
and provides more robust inputs for downstream reasoning.

A key methodological advancement in Version 2 is the integration of a custom-trained SpeciesNet
model through transfer learning [2]. By fine-tuning a pretrained architecture on a curated wildlife dataset,
the model improves classification accuracy for species most relevant to the system. Within the workflow,
SpeciesNet operates alongside embeddings and ecological filters, acting either as a primary classifier
when its label set matches the query species or as an additional validation signal to confirm or re-
rank predictions. This dual role increases flexibility and ensures that model specialization strengthens the
broader multi-model pipeline.

Another advancement is the introduction of agentic workflows using LangGraph. Species identification
is no longer a single-model decision but a dynamic process in which embeddings, SpeciesNet predictions,
color and size features, and ecological presence data are jointly evaluated. The agentic workflow enables
conditional logic such as candidate re-ranking, fallback to supervised classification, or adjustment of
weighting when text similarity provides stronger signals. This approach produces a transparent, stepwise
inference process in which intermediate results and reasoning can be inspected.

The system has also been containerized as a desktop application, providing photographers with local
control over sensitive images and models. In parallel, cloud-hosted services expose species datasets,
ecoregion layers, and search functionality through an API and Model Context Protocol (MCP) server.
This client–server design follows a separation of concerns in which local execution protects intellectual
property and sensitive data, while cloud endpoints deliver shared ecological knowledge in a controlled
manner. Together, these design choices improve reproducibility, support responsible data use, and enable
collaboration without compromising ownership or wildlife protection.

Building on the foundation of Version 1, the project integrates advanced feature extraction, multi-model
prediction, supervised transfer learning, and agentic orchestration to support more robust validation and
species identification while maintaining clear safeguards. These enhancements collectively strengthen the
reliability and extensibility of the platform, ensuring it can evolve into a practical tool for ecological
research and wildlife monitoring, as illustrated in Figure 2.
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Fig. 2. Wildlife Image Processing and Semantic Search System Architecture V2

IV. DATA DESCRIPTION

This project is designed primarily for personal use; however, broader application of the system raises im-
portant considerations related to data governance, intellectual property, and responsible research practices.
Wildlife photographers, in particular, have valid concerns regarding image ownership and intended use.
The system preserves original file structures, metadata, and attribution, and any expansion beyond personal
datasets would require explicit consent policies, access controls, and safeguards to respect photographer
rights. Additionally, the system processes location data for species detection, which introduces potential
risk if sensitive sites such as nesting locations are inadvertently exposed. Public-facing implementations
would therefore require location masking or spatial generalization to protect vulnerable wildlife from
human disturbance.

These concerns are addressed not only through policy considerations but through the architecture of
the system itself. The design follows a deliberate separation of concerns in which sensitive image data
and custom-trained models remain under the photographer’s control within the desktop client, while
cloud-based services provide curated species datasets, ecoregion boundaries, and geospatial layers. This
client–server separation preserves intellectual property, reduces the risk of raw imagery misuse, and
protects sensitive wildlife locations, while still enabling shared ecological services to support broader
research efforts. As illustrated in Figure 2, this architectural balance allows local processing and secure
cloud services to coexist in a manner that supports both conservation priorities and collaborative ecological
research.

V. EXPECTED OUTCOMES

The expected outcome of this project is improved species prediction accuracy and enhanced ecological
insight through the introduction of agentic pipelines and AI-driven reasoning. Building on the existing
platform, Version 2 introduces advanced feature extraction, supervised transfer learning for species classi-
fication, and multi-model reasoning workflows designed to support more robust validation and contextual
inference.



5

Transfer learning with a custom-trained SpeciesNet model strengthens species classification by adapting
pretrained architectures to a curated wildlife dataset, leveraging feature representations learned from
large-scale visual data [8]. Prior work has shown that such fine-tuning approaches improve performance
in ecological imagery when compared to generic classifiers, particularly when domain-specific visual
variation is present [2].

Together, these components create a unified platform that not only organizes and classifies wildlife
imagery, but also enables robust search, advanced validation, and insight generation grounded in ecological
context. The resulting system provides a flexible and extensible foundation for future research in wildlife
monitoring and applied ecological machine learning.

VI. TIMELINE

Week Focus Deliverables
Week 1 Project Setup Setup up the graph database, modeling the schema to support the WWF

[7] taxonomy, locations, and relationships needed for species detection and
observation. Import the initial data, focusing on getting core nodes and
properties in place.

Week 2 Graph Database Continue working on the graph data model, ensuring that taxonomy, location,
and observation nodes are fully connected and queryable. Expand the model
to include user, geospatial, images, and embeddings.

Week 3 OpenCV Feature Extraction Integrate OpenCV to extract additional features from images, such as color
histograms and texture metrics, which will be used to enhance embeddings.
Begin refactoring the codebase to route all new data and embeddings into the
graph database, and update embeddings.

Week 4 Agentic Development Start agentic development by scaffolding the LangChain backend, including
basic MCP prompt templates. Implement the first agent pipeline, where an
uploaded image is routed through a species prediction workflow, and the
results are pushed to the graph database.

Week 5 Agentic Development Continued Enhance the LangChain integration, expanding the agent workflows to include
prompt-based branching and additional validation logic. Ensure agent outputs
are transparently stored, with clear links between predictions, inputs, and
derived properties for each observation.

Week 6 Custom Model Shift focus to model development, introducing a custom-trained SpeciesNet [2]
model using transfer learning. The goal is to adapt the pretrained architecture
to the project’s curated wildlife dataset, improving accuracy for target species
and establishing a stronger foundation for multi-model prediction. By fine-
tuning on local images, SpeciesNet [2] becomes specialized for the species
most relevant to the system, creating a dedicated classification component that
complements embedding-based methods and supports more reliable ecological
analysis.

Week 7 Final Presentation & Demo Prepare for the final presentation by polishing documentation, capturing demo
videos, and rehearsing the end-to-end workflow. Assemble supporting visuals
and summaries that highlight system capabilities, technical choices, and the
overall impact of combining graph databases, agentic AI, and enhanced
computer vision in wildlife research.

TABLE I
PROJECT TIMELINE

VII. RESULTS

The evaluation of Version 2 highlights the complementary strengths and limitations of embedding-
based similarity search and supervised species classification within a multi-model pipeline. When relying
primarily on semantic embeddings combined with ecological filtering and re-ranking, the system achieved
an overall species prediction accuracy of 77.9 percent. Performance varied by species, with higher accuracy
observed for visually distinctive or well-represented species, and lower accuracy for species with subtle
visual differences or limited training examples, as illustrated in Figure 3.
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Fig. 3. Multi-Model Species Prediction

Initial experiments using transfer learning with a custom-trained SpeciesNet model produced promising
results, with apparent accuracy approaching 97 percent. However, further analysis revealed overlap between
training and evaluation images caused by non-independent random splits. Because many images were
captured during the same days and sessions, the model exhibited signs of memorization rather than true
generalization. To address this issue, grouped train–test splits were introduced based on capture date,
ensuring that all images from a given day were assigned exclusively to either the training or evaluation
set.

After applying grouped splits, classification performance stabilized, with accuracy reaching approx-
imately 89 percent for species with sufficient diversity across lighting conditions, poses, and capture
sessions. Species with limited or homogeneous training data continued to exhibit weaker performance,
underscoring the importance of dataset size and variability for effective transfer learning. With an average
of approximately 40 training images per species, the model remains underpowered for robust generaliza-
tion.

Despite these limitations, the results demonstrate the effectiveness of a multi-model approach that
combines embeddings, supervised classification, and ecological constraints. The flexibility of agentic
re-ranking and validation enables the system to balance confidence, and accuracy, providing a strong
foundation for future improvements as additional data becomes available.

VIII. ETHICAL CONSIDERATIONS

The application of AI to wildlife imagery raises important ethical considerations related to species
protection, data stewardship, and responsible use of location-based information. Wildlife photographs
often capture sensitive ecological contexts, such as nesting sites, den locations, or breeding behavior,
where unintended disclosure can increase the risk of disturbance, harassment, or habitat degradation. As a
result, systems designed to analyze and organize wildlife imagery must prioritize ecological responsibility
alongside technical accuracy.

This project adopts a “tag responsibly” approach, emphasizing that species identification and metadata
enrichment should not automatically imply public disclosure of precise locations or sensitive behavioral
information. While geospatial data is essential for ecological reasoning and species validation, public-
facing outputs must avoid exposing fine-grained coordinates for vulnerable species. The system is therefore
designed to support location generalization, masking, or region-level abstraction, particularly for nesting,
denning, or endangered species, ensuring that analytical capability does not translate into ecological harm.

Ethical considerations are further addressed through architectural design choices that preserve photog-
rapher ownership and control. Sensitive images and custom-trained models remain local to the desktop
client, while shared cloud services provide curated species distributions and ecological context without
requiring access to raw imagery. This separation of concerns protects intellectual property, reduces the
risk of misuse, and aligns with ethical principles of consent and data minimization.

Finally, the system acknowledges the limitations of AI-driven species identification and avoids present-
ing predictions as authoritative labels. Human-in-the-loop validation, confidence scoring, and transparent
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workflows are used to prevent overconfidence in automated outputs. By treating AI as an assistive tool
rather than a definitive arbiter, the platform promotes responsible interpretation and use of wildlife data.
Collectively, these design choices reflect a commitment to ethical AI practices that respect wildlife,
photographers, and the broader goals of conservation-focused research.

IX. CONCLUSION

This project advances the application of data science to ecological analysis by transforming unstructured
wildlife imagery into structured, actionable insight through a modular, AI-driven system. Building on the
foundations established in Version 1, Version 2 introduces multi-model species identification, transfer
learning, and agentic reasoning to improve prediction accuracy, transparency, and ecological grounding.
By integrating semantic embeddings, supervised classification, and spatial constraints, the system ad-
dresses key limitations of general-purpose image management tools and aligns automated predictions
with biological reality.

Beyond its technical contributions, this work demonstrates the importance of designing AI systems that
respect ecological context, intellectual property, and responsible data practices. The platform’s separation
of local and cloud components enables collaboration and extensibility while preserving photographer
ownership and protecting sensitive wildlife data. As a result, the system provides a reproducible and
ethically grounded framework for applying machine learning to wildlife research and monitoring.

As the culmination of my data science studies, this project reflects a transition from exploratory
experimentation to the design of robust, extensible systems. It unites machine learning, transfer learning,
geospatial analysis, data engineering, and responsible AI practices into a cohesive platform with real-world
applicability. Version 2 demonstrates readiness for professional practice and the ability to develop applied
data science solutions that extend beyond academic exercises to support ecological research, conservation,
and wildlife monitoring.
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